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A s p e c i a l - c o r r e l a t i o n  ana lys i s  is made of the  t r a j e c t o r i e s  of the motion of a pa r t i c le  marked  
with a rad ioac t ive  i so tope  in a f luidized bed containing in inse r t .  The movement  of the p a r -  
t ic les  is inves t igated and the p a r a m e t e r s  of the c i rculat ion and diffusion models  a r e  de te rmined .  

The ma thema t i ca l  modeling of the  p r o c e s s e s  of t r a n s f e r  of m a t t e r  and heat in a fluidized bed (FB), in 
a cata lyt ic  r e a c t o r  in p a r t i c u l a r ,  is developed on the bas is  of extensive exper imenta l  ma te r i a l .  The major i ty  
of the known methods al low one to obtain information about the local or  in tegra l  p rope r t i e s  of FB or s e rve  to 
identify the p a r a m e t e r s  of the proposed ma themat i ca l  models .  The methods of a t h e r m a l  m a r k e r  [1, 2] or  a 
magnet ic  [3, 4], chemica l  [5], e t c . , m a r k e r ( s e e  Fluidizat ion,  edited by I. F. Davidson and D. H a r r i s o n ) a r e  
widely used in the invest igat ion of the cha r ac t e r i s t i c s  of the solid phase  of FB. At the s a m e  t ime ,  only two 
exper imen ta l  methods al low the  d i rec t  study of pa r t i c l e  motion without disrupt ing the s t r u c t u r e  of the bed with 
de tec to r s .  The f i r s t  is based  on following a pa r t i c le  which is a sou rce  of rad ioac t ive  emiss ion  [6, 7] while 
the second is based on the observa t ion  of a pa r t i c l e  which is opaque to x - r a y  [8] or  v is ib le  [9] light. 

In the p re sen t  work we have developed an exper imenta l  means  of invest igat ing par t ic le  motion in fluid- 
lzation, made  a detai led ana lys i s  of pa r t i c le  behavior  in an organized fluidized bed (OFB), and de te rmined  the 
p a r a m e t e r s  of the notable mode l s .  

E x p e r i m e n t a l  P r o c e d u r e  

We used a method whose foundations were  developed in [6]: following a pa r t i c le  marked  by a rad ioac t ive  
cobalt  i sotope.  The exper imen ta l  instal la t ion was coupled with a Dnepr-2  compu te r - con t ro l  s y s t e m  (CCS) [10, 
11]. The random nature  of rad ioac t ive  decay in t roduces  an additional and,  when the act ivi ty of the par t ic le  is 
low, a v e r y  signif icant  e r r o r  into the de te rmina t ion  of the coordina tes .  The separa t ion  of the useful random 
signal  (the coordinates)  f r o m  the r andom in t e r f e rence  r e p r e s e n t s  a compl ica ted ma themat i ca l  p rob lem.  But 
to study the c h a r a c t e r  of the behavior  of a pa r t i c l e  it proved poss ib le  to de t e rmine  es t imates  of the s ta t i s t i ca l  
c h a r a c t e r i s t i c s  of the r andom p roces s  of i ts  motion without finding the  t rue  t r a j e c t o r y  but having avai lab le  
the total  s ignal  and the cor responding  es t ima tes  of the s ta t i s t i ca l  c h a r a c t e r i s t i c s  of the in t e r fe rence  signal .  

The conditions under which the exper imen t s  were  conducted were:  act ivi ty  of par t ic le  about 0.2 mCi,  
d i a m e t e r  of appara tus  0.18 m ,  bulk height of bed 0.2 m ,  through c ro s s  sect ion of dis t r ibut ion gr id  5.2%, fluid- 
ized ma te r i a l :  ca t ton i te  (d = 0.8.10 -3 m,  p =650 kg/m3),  s i l i ca  gel  (d =1 .2 .10  -3 m ,  p = 750 kg/m3).  We 
var ied  the gas  (air) veloci ty and the type of organizing device ,  the cha r ac t e r i s t i c s  of which a r e  p resen ted  in 
Table  1. The bed was ca l ibra ted  under  working condit ions.  P rob l ems  involving the s ta t i s t i ca l  re l iabi l i ty  of 
the r e su l t s  obtained, ver i fying the ergodici ty  of the p r o c e s s ,  es t imat ing the min imum observat ion t ime ,  etc. 
a r e  d i scussed  in [8] for  a f ree ly  boiling bed. We adhered  to the methods suggested t he r e .  

Before  finding es t imates  of the s t a t i s t i ca l  c h a r a c t e r i s t i c s  of the random p roces s  of pa r t i c le  motion it 
is useful  to make  a quali tat ive ana lys i s  of the t r a j e c t o r i e s .  Typical  synchronously  recorded  sect ions  of the 
t r a j e c t o r i e s  of motion of the marked  pa r t i c l e  in a n O F B w i t h  a quantization t i m e  of 0.3 sec a r e  presented  in 
Fig.  1. One can conclude that  the marked  par t ic le  moves  through the ent i re  volume of the bed, the zones of 
i ts  a scen t  and descent  not being fixed. The intensi ty of pa r t i c l e  motion in an OFB is considerably  lower  than 
that  in a f r e e  bed,  and in the t r a j e c t o r i e s  of a pa r t i c l e  in an OFB one notes sect ions of s e v e r a l  seconds dura -  
tion when the par t i c le  undergoes  osc i l l a tory  motions within the confines of a sma l l  section of the bed on the 
o rde r  of the d imensions  of the inse r t .  Such sect ions  a l t e rna te  with sect ions  of d i rec ted  motion and a r e  evi -  
dently explained by a shor t - l ived  aggregat ion of pa r t i c l e s .  Ver t ica l  movements  can r each  the boundaries of 
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TABLE 1. G e o m e t r i c a l  C h a r a c t e r i s t i c s  of Inse r t s  

Inser t  

No. 
Type 

Pall rings 
Double wire spirals 
Double wire spirals 
Double wire spirals 

Diameter 
of element, 

mm 

30 
25 
20 
12 

Nire diam, 
Height, or wall 
mm 

:hickness, 
rilrn 

30 0,,~ 
40 2.0 
20 1,0 
15 1,0 

t.,,., J \  I �9 I \ . . . . .  z : 

O 6 12 18 t 

o 6 ;2 .'8 t 

500 ] t  - ~ b " 
1 ; lZO0 2 - - 

I _ 

o ~, o, z5 f2 f o o ,~  o,~- 

F i g  1 Fig .  2 
F ig .  1. T r a j e c t o r i e s  of motion of a marked  p a r t i c l e  in the v e r t i c a l  (z, cm) and hor izonta l  (x, cm) 
d i r ec t ions  in an OFB. Ug = 1.17 m / s e c ;  1) i n se r t  No. 2; 2) No. 3. 

F ig .  2. S p e c t r a l - d e n s i t y  functions S z (cm 2. sec) for  the random p r o c e s s  of p a r t i c l e  motion in the 
v e r t i c a l  d i rec t ion :  a) Ug = 1.05 m / s e c ;  b) 1.42 m / s e c ;  1, 2, 3, 4) i n se r t s  Nos.  1, 2, 3, and 4, r e -  
spec t ive ly ;  5) f r ee  bed,  Ug = 0.7 m / s e c .  

the bed,  whereas  l a r g e  hor izonta l  d i sp l acemen t s  a r e  very r a r e .  The ve loc i t i e s  on the sect ions  of ascending 
motion can exceed the ve loc i t i es  on the sec t ions  of descending motion by two to t h r e e  t i m e s .  At high gas 
ve loc i t i e s  (near the c a r r y - o f f  velocity)  the p a r t i c l e  motion s lows with an i n c r e a s e  in gas  veloci ty .  The fo rm 
and d imens ions  of the i n s e r t  affect  the c h a r a c t e r  of the p a r t i c l e  motion.  F o r  example ,  sec t ions  of d i r ec t ed  
motion a r e  encountered far  more  r a r e l y  for  i n s e r t s  Nos. 1 and 4 than for  i n s e r t s  Nos. 2 and 3. 

S p e c t r a l - C o r r e l a t i o n  A n a l y s i s  

A s p e c t r a l - c o r r e l a t i o n  ana lys i s  of the t r a j e c t o r i e s  of a marked  p a r t i c l e  was c a r r i e d  out to inves t iga te  
the mechan i sm of p a r t i c l e  motion in an OFB. Such an approach  was employed e a r l i e r  in [12, 13], but the 
question of the e r r o r  of the r e su l t ing  s t a t i s t i c a l  c h a r a c t e r i s t i c s  was not t r e a t e d ,  as a ru le .  An ana lys i s  of 
the i n t e r f e r e n c e  s igna l ,  conducted for  i ts  subsequent  f i l t r a t ion ,  showed that  it  is a s teady unc o r r e l a t ed  r a n -  
dom p r o c e s s  with a nea r ly  no rma l  d i s t r ibu t ion  law. The au toco r re l a t i on  function of the random p r o c e s s  of 
motion of the marked  p a r t i c l e ,  de t e rmined  f rom the r e c o r d e d  p a r t i c l e  coord ina tes  with a l lowance for  the auto-  
c o r r e l a t i o n  function of the i n t e r f e r e n c e  s igna l ,  approaches  ze ro  with an i n c r e a s e  in the t ime  shif t .  Hence this 
p r o c e s s  is  a s teady ergodic  one, which can be cons ide red  as an a rgument  in favor  of the appl icab i l i ty  of the 
ergodic  hypothesis  of s t a t i s t i c a l  phys ics  to  OFB. 

Hemming ' s  e s t i m a t e  [14] ~ s  used to  ca lcu la te  the e s t ima te s  of the s p e c t r a l  dens i ty .  A quantizat ion 
t ime  of 0.1 sec  for  the t r a j e c t o r i e s  made it poss ib l e  to ana lyze  s p e c t r a  with an upper  l imi t ing  f requency of 
5 Hz. The equivalent  f requency band and the r e l a t i v e  r o o t - m e a n - s q u a r e  e r r o r  of the e s t ima te s  were  0.0625 
and 0.23 Hz, r e s p e c t i v e l y .  Typica l  g raphs  of the s p e c t r a l  dens i t i es  of the random p r oc e s s  of motion of the 
marked  p a r t i c l e  a r e  p re sen ted  in F ig .  2. 

Most of the  energy of p a r t i c l e  movement  in an OFB fa l ls  in the region of low f requencies  up to 0.2 Hz. A 
peak,  which shif ts  into the l o w e r - f r e q u e n c y  region  with an i n c r e a s e  in gas  ve loc i ty ,  down to the appea rance  of 
a max imum at the ze ro  f requency ,  is  c l e a r l y  e x p r e s s e d  on the s p e c t r a  in this  r eg ion ,  which may be explained 
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TABLE 2. P a r a m e t e r s  of Circulat ion Model 

Gas vetocity, v,m/~c c~ 8, sea'1 
Insert No. m/sec 

I 

2 

P~er bed 

1,05 
1,05 
1,25 
1,35 
0,53 
0,7 

0,095 
O, 072 
0,045 
0,045 
0,12 
0,232 

2.24 
1,66 
1,8 
! ,43 
1,15 
1,26 

1,65 
1,75 
0,62 
! ,12 
1,57 
3,7 

by the r andom phase  dis t r ibut ion of the l a r g e - s c a l e  m o v e m e n t s .  A m o r e  uni form f requency distr ibution of 
t h e  energy  of pa r t i c l e  m ovem en t  was obse rved  in the f r e e  flnidized bed in the range  up to 1 Hz (in Fig.  2b, 
cu rve  5 up to  0.375 Hz). 

The f requency  region of 0.2-0.5 Hz,  where  t he r e  is a m a x i m u m ,  as a r u l e ,  is dist inguished in all  the 
s p e c t r a .  Some pa r t  of the ene rgy  of the r andom p roces s  is d is t r ibuted  in the f o r m  of "white noise.  �9 This 
s p e c t r a l  f o r m  re f l ec t s  the compl ica ted  c h a r a c t e r  of the pa r t i c l e t s  motion and its par t ic ipat ion in osc i l l a to ry  
p r o c e s s e s  with di f ferent  ampl i tudes  and f requenc ies .  

The spa t i a l  s ca les  of these  p r o c e s s e s  can be es t imated  in the following way. The hatched a r e a s  in the 
vicini t ies  of the f requencies  fl and f2 (Fig. 2a) a r e  approx imate ly  equal to the d i spers ions  of the ampli tudes  of 
the r e s p e c t i v e  ha rmon ics .  The s qua re  roots  of the d i spe r s ions  (the s tandard  deviat ions of the r e spec t i ve  a m -  
pli tudes f r o m  ze ro  ma thema t i ca l  expectations} a r e  55 and 14 m m .  The f i r s t  of these  quantit ies allows one to 
find the  s ca l e  of the low-f requency  c i rcula t ion  m o v e m e n t s ,  which a r e  comparab le  with the height of the ex-  
panded bed in o r d e r  of magni tude.  The second de t e rmines  the sca le  of the col lec t ive  pa r t i c l e  in terac t ion ,  
approx ima te ly  equal to the d imens ions  of the i n se r t .  It is in te res t ing  to note that  the f i r s t  quantity grows with 
an i n c r e a s e  in the gas  veloci ty  (and the deg ree  of expansion of the bed) while the second r ema ins  a lmos t  un-  
changed. M o r e o v e r ,  as  shown by a calculat ion of the s p e c t r a l  densi t ies  of the r andom p roces s  of pa r t i c le  
motion in the hor izonta l  d i rec t ion ,  t h e r e  is a l so  a maximumAn t h e  f requency region of 0.15-0.4 Hz. 

The following conclusions about the main fo rms  of pa r t i c l e  motion in OFB can be drawn on the basis  of 
the s p e c t r a l  densi t ies  and t r a j e c t o r i e s .  The low-f requency  region of the s p e c t r u m  cor responds  to d i rec ted  
l a r g e - s c a l e  (usually per iodic)  pa r t i c l e  movemen t s .  They a r e  the r e su l t  of the action of fo rces  on the par t  of 
the fluidizing s t r e a m .  The r i s e  of pa r t i c l e s  in the hydrodynamic  wake of a bubble is compensa ted  for  by the i r  
descending f low, s ince c i rcula t ing  pa r t i c l e  motion occu r s ,  which is c l ea r ly  seen in the t r a j e c t o r i e s  of the m o -  
t ion.  The hor izonta l  low-f requency  movemen t s  of a pa r t i c l e ,  in con t ras t  to the ve r t i ca l  ones ,  a r e  nonperiodic ,  
while the type of i n s e r t  and the gas  veloci ty  exer t  a weak influence on the c h a r a c t e r  of the s p e c t r u m .  

The osc i l l a to ry  p r o c e s s e s  with low ampl i tudes  a r e  r ep re sen t ed  on the spec t r a  by the f requency region of 
0.2-0.5 Hz and a r e  evidently due to the in terac t ion  of the marked  par t i c le  with aggrega tes  of pa r t i c l e s .  The 
r ea son  for  the o c c u r r e n c e  of this  f o r m  of motion cons i s t s  in the following. In a f r ee  FB par t i c le  aggrega tes  
can move without hindrance through the en t i re  volume of the appara tus .  An organizing device  prevents  the 
growth and motion of aggrega tes  and p romotes  the development  of local ized o rdered  pa r t i c l e  mot ions ,  which 
p rove  to  be s tab le  for  shor t  t i m e  in te rva ls  under  the action of hydrodynamic  f o r c e s .  This  is indicated by the 
rough equality of the c h a r a c t e r i s t i c  f requencies  of var ia t ion  of the ve r t i c a l  and hor izontal  coordinates  of a 
pa r t i c l e  in the region under  cons idera t ion .  The peaks  in the OFB spec t r a  at these  f requencies  re f lec t  the fact  
that  s o m e  of the energy of col lect ive  osci l la t ions  of pa r t i c l e s  along the height of the bed is s ca t t e r ed  by the in-  
s e r t  in a d i rec t ion t r a n s v e r s e  to the s t r e a m .  

The coll is ion of pa r t i c l e s  with each other  and with e lements  of the i n se r t ,  the in terac t ion  of the bound- 
a ry  l aye r s  sur rounding  the p a r t i c l e s ,  e tc .  give r i s e  to the i r  osci l la t ing motion with very  low ampl i tudes .  

The d i f fe rence  between the c h a r a c t e r i s t i c  t imes  of the two main f o r m s  of pa r t i c le  motion in an OFB (c i r -  
culating motion and aggregat ion  in an ensemble)  pe rmi t s  a sounder  approach  to the descr ip t ion  of the nonsteady 
and t h e r m a l  f ields in r e a c t o r s  containing OFB. Thus ,  for  " fas t"  p r o c e s s e s  of m a s s  t r a n s f e r  it is sufficient 
to al low only for  the  pa r t i c l e  motion occur r ing  at  the ensemble  level  [15] while l a r g e - s c a l e  motions can be 
ignored ,  s ince the t e m p e r a t u r e  inside an ensemble  is not able  to va ry  noticeably during its ex is tence .  The 
l a r g e - s c a l e  pa r t i c l e  motion de t e rmines  the dynamics  of the t h e r m a l  fields in a r e a c t o r ,  s ince the c h a r a c t e r -  
i s t ic  t i m e  of var ia t ion  of the t e m p e r a t u r e  of an ensemble  exceeds its mean l i fe t ime by two to th ree  o rde r s  of 
magni tude.  The model  for  this mot ion,  the c i rcula t ion model ,  for  example ,  will be the bas i s  for  the t e m p e r -  
a tu re - f i e ld  model .  
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Fig.  3. Density functions C (arb. units) of distribution of 
marked par t ic les  over  bed height H = l / L  (dimensionless) at 
different t imes t ,  s ec ,  experimental  and calculated f rom the 
circulat ion model: Ug = 1.25 m / s e c ;  a) inser t  No. 2, L = 0.38 
m; b) No. 4, L = 0.44 m. 

Usually the par t ic le  motion in an FB is descr ibed by a diffusional model of the parabolic  type (Brownian 
motion) or the hyperbolic type,  a diffusional model with a convective flow of part icles  Cvector ized"  Brownian 
motion), or by a circulat ion model of opposing s t r eams .  The method of observing a marked par t ic le  allows 
one to compare  the experimental  resul ts  with model  concepts and to determine the pa ramete r s  of the models.  
For  this we developed a method of construct ing distribution density functions of the part icles  with respec t  to 
the coordinates and t ime at a fixed gas velocity.  

P a r t i c l e  M o t i o n  

The essence  of the method consists  in making a t ime recording of the coordinates of marked par t ic les  
initially concentrated in some c ross  section along the height of the bed using the CCS, and then his tograms of 
the distribution of par t ic les  over the height of the bed at different t imes relat ive to the s tar t ing point a re  con- 
s t ructed .  Since the random process  of par t ic le  motion is a steady ergodic p roces s ,  the averaging over indi- 
vidual sections of t r a jec to r ies  having an origin in the same c ross  section of the bed can be t reated as ave rag-  
ing over  a set of s tat is t ical ly independent real izat ions .  

The organization of the introduction of a "batch" of marked par t ic les  was per formed using a sys tem of 
la tera l  detectors  screened by lead plates f rom the entire fluidized bed except for a nar row horizontal  slit  about 
3 mm wide. The fact of the a r r iva l  of the marked par t ic le  at the assigned cross  section of the bed was r e c o r -  
ded sufficiently accura te ly  by the side de tec tors ,  a f ter  which the recording by the upper and lower detectors  
of the ver t ica l  coordinates of the par t ic le  began, s tar t ing f rom the t ime of its a r r iva l  at the given c ross  section 
until the lapse of a t ime interval  chosen in advance. Then the t ime the par t ic le  c rossed  the slit  was again r e -  
corded and the entire procedure  ~ s  repeated.  Crossing the slit by the par t ic le  N t imes corresponds to the 
introduction of a hatch of N marked par t ic les .  It takes about 10-15 h to conduct experiments with a "batch" of 
1000 par t i c les ,  which is due to the physical  proper t ies  of the OFB investigated�9 After  the accumulation of the 
necessa ry  amount of information his tograms of the distribution of "marked"  part icles  with respec t  to the co-  
ordinates and t ime were constructed�9 

Examples of distr ibut ion-densi ty functions of marked par t ic les ,  complicated by random in ter ference ,  
a re  presented in Fig�9 3. In f ree  FB and FB organized by large  inser t s  (Nos�9 1 and 2) one can distinguish 
two maxima,  which gradually shift from the point of insert ion of the par t ic le  "batch" to the edges of the bed 
and disappear  with time. In an OFB containing a relat ively small  inser t  (No. 4) the dis tr ibut ion-densi ty func- 
tions a re  near ly  unimodal. Bimodality of the dis tr ibut ion-densi ty functions indicates a cor re la t ion  of the velo- 
ci t ies  of par t ic le  motion, with the cor re la t ion  being the s t ronger ,  the more  c lear ly  expressed the maxima. 

D e t e r m i n a t i o n  o f  P a r a m e t e r s  o f  M a t h e m a t i c a l  M o d e l s  

The best agreement  was obtained in a compar ison of the experimental  par t ic le  dis tr ibut ion-densi ty func- 
tions with those calculated f rom the circulation model.  In the case of the OFB with inser t  No. 4 the experiments 
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Fig. 4. Dependence of effect ive coeff i -  
cient of diffusion Def (m2/sec) of pa r t i -  
cles in the ve r t i c a l  d i rec t ion on the gas  
velocity:  1, 2, 3, 6) cat ioni te  par t i c les  
with i n se r t s  Nos. 1, 2, and 4 and a 
f r ee  FB,  respec t ive ly ;  4,  5) s i l i ca  gel  
pa r t i c les  with inse r t s  Nes .  2 and 3. 

a r e  a l so  sa t i s fac to r i ly  desc r ibed  by a diffusional  model  of the parabol ic  type.  A number  of the exper imen t s  
w e r e  inves t iga ted  with the help of a diffusional  equation of the hyperbol ic  type [16] ( inser ts  Nos.  1, 2, and 4). 

The c i rcula t ion model  was used in the f o r m  

U OCt OCt 
,gt + ~ ' [~ ( c , - -  G)  = o, (I) 

U dCa OCz 
- -  ~ + I~ (C~ - -  C2) = 0 (2 )  

Ol cgt 

with the  boundary conditions l = 0, L; C 1 = C 2. Here  U is  the veloci ty  of the ascending par t i c le  motion; ~ is  
the r a t io  of veloci t ies  of the ascending and descending motions;  /3 is the coeff icient  of pa r t i c le  exchange between 
s t r e a m s ;  C 1 and C 2 a r e  the concentra t ions  of "marked"  pa r t i c les  in the  ascending and descending s t r e a m s .  

The pa r t i c l e  dis t r ibut ion densi t ies  were  calculated f r o m  (1) and (2) with a l lowance for  the d i spe r s ion  
of the i n t e r f e r ence ,  which was de te rmined  in independent expe r imen t s .  The p a r a m e t e r s  of the c i rculat ion 
model  were  de te rmined  by minimizing the sum of the  squa re s  of the deviat ions of the exper imen ta l  points 
f r o m  functions with unit weights calculated fo r  s ix  t i m e s .  The veloci t ies  of the ascending and descending m o -  
t ions of a pa r t i c l e  es t imated  f r o m  its t r a j e c t o r y  were  taken as the init ial  approximat ions .  The p a r a m e t e r s  
of the model  a r e  p resen ted  in Table  2. In [2] these  p a r a m e t e r s  were  found using the method of an ins tan ta -  
neous heat  source .  

It is known that  the diffusional approximat ion  is valid over  t i m e  in terva ls  longer  than the cor re la t ion  t i m e  
of the pa r t i c l e  veloci ty .  The s i zes  of t hese  in te rva ls  depend on the type of i n se r t  in the OFB, the gas  veloci ty ,  
and the c h a r a c t e r i s t i c s  of the fluidized ma te r i a l .  The dlffusional model  of pa r t i c l e  motion can be used in mod-  
el ing s teady p r o c e s s e s  with s m a l l  t e m p e r a t u r e  gradients  over  the bed. In this case  the par t ic les  provide  suff i -  
ciently in tense  heat  t r a n s f e r  in the FB and the  detai led m e c h a n i s m  of the i r  motion is not impor tan t .  

We made a d i r ec t  calculat ion of the r m s  d i sp lacement  of a pa r t i c l e  along its  t r a j e c t o r y  with a subsequent  
de te rmina t ion  of the coefficient  of diffusion of the  pa r t i c l e  f r o m  the Einstein equation. It was p re l imina r i ly  
es tab l i shed  that  the d i spers ion  of the  r e c o r d e d  s ignal  can be r e p r e s e n t e d  by the sum of the  d i spe r s ions  of the 
useful  s ignal  (the coordinates  of the par t ic le)  and the in te r fe rence :  

Az 2 = a. Ah 2 § Ae 2. (3) 

Here  z(t) is the r e co rded  signal;  h(t) a r e  the coordinates  of the pa r t i c le ;  e(t) is the in t e r fe rence  signal;  a is 
s o m e  coeff icient .  It was es tab l i shed  that  the d i spers ion  of the in t e r f e rence  does not depend on the t i m e  i n t e r -  
val  At and the e r r o r  in its de te rmina t ion  does not exceed 16%. 

We cons t ruc ted  the dependences of Az ~ on At for  each hydrodynamic  mode,  and then f rom the tangent of 
the slope of the init ial  s t r a igh t  sect ion we calcula ted the mean value of the effect ive coefficient  of diffusion of 
the pa r t i c l e s .  At l a rge  At the r m s  d i sp lacement  of a pa r t i c le  d e c r e a s e s  owing to  the influence of the bounda- 
r i e s  of the bed, so  that  the Einstein equation cannot be applied.  

The dependence of the effect ive coefficient  of pa r t i c le  diffusion on the veloci ty of the  gas s t r e a m  for  a 
f r e e  bed and a bed organized by i n s e r t s  Nos. 1-4 is  p resen ted  in Fig.  4. This dependence is monotonic in the 
f i r s t  case  and e x t r e m a l  in the second.  A d e c r e a s e  in the cha rac t e r i s t i c  d imensions  of the inse r t  and an i nc rea se  
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in the d i a m e t e r  and densi ty of the pa r t i c les  of fluidized ma te r i a l  lead to a d e c r e a s e  in the effect ive coefficient  
of diffusion of the  p a r t i c l e s .  

The e x t r e m a l  c h a r a c t e r  of the dependence of the coefficient  of diffusion of pa r t i c les  in the ve r t i ca l  d i r e c -  
tion on the gas  veloci ty  in OFB can be explained by the fact  that  at  high l inear  veloci t ies  of the gas the l a t t e r  
is d is t r ibuted  m o r e  evenly than at low ve loc i t i es .  The  d e c r e a s e  in inhomogenei t ies  leads to the fact  that  the 
pa r t i c l e s  pa r t i c ipa te  predominant ly  in osc i l l a to ry  motions with low ampl i tudes  and,  as a consequence,  t he i r  
r m s  d i sp l acemen t  d e c r e a s e s .  In a f r ee  FB an i n c r e a s e  in the l inear  veloci ty  of the gas  leads to  an i n c r e a s e  
in the inhomogenei t ies ,  which p romote  the l a r g e - s c a l e  t r a n s p o r t  motion of p a r t i c l e s ,  as  a r e su l t  of which 
the i r  r m s  d i sp lacement  i n c r e a s e s .  It should be noted that  in exper imen t s  with an instantaneous heat so u rce  
[2] they noted a monotonic c h a r a c t e r  of the dependence of the effect ive t h e r m a l  diffusivity of the bed on the 
gas  ve loc i ty ,  whereas  a m a x i m u m  was observed  when the effect ive longitudinal t h e r m a l  conductivity was d e t e r -  
mined [4, 17], 

Calculations of the effect ive coeff icient  of pa r t i c l e  diffusion in the horizontal  d i rect ion showed that it 
hard ly  depends on the gas  veloci ty  and the type of i n se r t  and equals 1.5 �9 10-4-3 �9 10 -4 m2/sec nude r the t es t  conditions. 

N O T A T I O N  

z and x, ve r t i ca l  and hor izontal  coordinates  of ma rked  pa r t i c l e ,  cm;  t ,  t ime ,  sec;  S z, spec t r a l  densi ty 
of r andom p r o c e s s  z(t), cmZ-sec;  f ,  f requency ,  Hz; Ug, l inear  gas  veloci ty ,  m / s e c ; d ,  mean  d i a m e t e r  of fluid- 
ized p a r t i c l e s ,  m; p ,  bulk densi ty of p a r t i c l e s ,  kg/m-~; l ,  coordinate  along bed, m; L,  bed height,  m; D e f  t 
effect ive coeff icient  of pa r t i c l e  diffusion,  m2 / sec .  
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